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We have investigated a generalized Frenkel-Kontorova model with a Morse-type potential which can change
from a convex function to a nonconvex one as the nonlinearity paramxdtereduced. For small enough
there appear in the phase diagram nonconvex phases in which at least one pair of atoms is influenced by the
nonconvex part of the Morse potential. There are no incommensurate states in the nonconvex phases. For
0>0.35, a devil's staircase along the critical points of the Aubry transitions of all incommensurate states
can be constructed. We studied the universality of the Hausdorff dimension of the devil's staircase,
and of some critical exponents relevant to the Aubry transitip®$063-651X98)14302-7

PACS numbgs): 05.45:+hb, 64.70.Rh, 05.70.Jk

[. INTRODUCTION Of the works which considered modified forms of inter-
atomic interactions, Ref$6,10—13 changed the type of in-
Many condensed-matter systems, such as charge-denstractive potential from convex functions to nonconvex ones.
waves, magnetic spirals, and adsorbed monolayers, exhibithese works were mainly concerned with the many compli-
the structures of commensurate and incommensurate statggted phase diagrams and phase transitions induced by the
as a result of two or more competing interactions in the sysnonconvex potentials, and thus did not discuss the important
tems. The main features of such modulated structures arﬁnning_depinning phase transition a|0ng the incommensu-
well modeled by the Frenkel-Kontorov&K) model[1,2]. rate stategthe so-called Aubry transition4]. References
The FK model describes a chain of atoms subjected to a4 15 considered convex potentials of the Toda and the
external periodic potential. The Hamiltonian of the FK ¢qqp tyne Multifractal structures and local critical exponents
model can be divided into two parts. One part is the ENEIYY%t the Aubry transition are studied in these works, but the

m;'cer;]; dugftt?\éh:témzr??gzI?(taer:]iﬁ“oenr‘sc; de}gd é?gn?g;e{:c') hase diagrams found were simply smooth deformations of
gy ! X periodic p 1al. hat of the standard FK model.

the standard FK model, the chain of atoms is connected by In this work, we shall consider a generalized FK model

harmonic springs and subjected to an external sinusoidal po-. . . . )
tential. The Hamiltonian of the standard FK model is givenWlth a nonconvex interatomic potential having the form of a
by modified Morse potentidl16]. This potential is chosen not

only because it represents the interatomic interaction better
than the simple harmonic potential does, but also because it
can change gradually from a convex function to a nonconvex
one as the nonlinearity parametepf this potential changes.
This enables us to see how the complicated phase structures
emerge, and how the Aubry transitions are affected as the
nonconvex interaction sets in.

What we found can be briefly summarized below. For
large enougly, the phase diagrams of this model are simply
smooth deformations of the phase diagram in the standard
HereW;(x;, 1—X;) is the potential of the interaction between FK model. But aso decreases, nhonconvex phases begin to
two nearest atomg/(x;) the external sinusoidal potential, = emerge. These are the phases in which at least one pair of
the position of theith atom, y the neutral length of the atoms is influenced by the nonconvex part of the Morse po-
spring, andk the rescaled strength of the external potentialtential. Incommensurate states do not exist in the nonconvex
compared to that of the spring potential. This seeminglyphases, indicating that these states are destroyed by the non-
simple one-dimensional model turns out to have very interconvex interaction. Fos smaller than a critical value, which
esting structures. The phase diagrams of the standard Fi& found to be 0.35, the Aubry transitions do not exist in
model and various phase transitions occurring in the systersome part of the phase diagram. feor 0.35, a devil’s stair-
have been thoroughly studied in previous wof&s-7]. case along the critical points of the Aubry transitions of all

In order to better model the real systems, many researcihcommensurate states can be constructed. The generalized
ers had considered FK models with more complicated forméractal dimension and the singularity spectrum vary slightly
of potentials. Some modified the forms of the external peri-as o changes in this range. The Hausdorff dimension, how-
odic potential[8,9], while others changed the forms of the ever, is the same as those found in the standard, Toda-, and
interaction between atonj$,10-13. cosh-type Frenkel-Kontorova modeffor a wide range of

H=§i: [Wi(Xi+1= %) +V(X)]

1 k
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Any atom on the edge of the rod cannot be compressed but
can be easily separated.

—
-

Let us consider the forcE between the atoms. The rela-
tion of the force and the distance of two nearest atoms is
given by

oW
_ — —2(Ax=y)lo_ o= (Ax—=y)lo
2(A%) ole e )].

(6)

The restoring forcé between atoms increases without limit
when the distance of two nearest atoms is shorter than the

natural length of the springAx<<y). That means the spring
is hard to compress.

0.0

2.5

However, when the distance of two nearest atoms is

longer than the natural length of the sprinyx(>v), there
exists a limiting value ofF, F.=—o/4, at the inflection

point AX=AXx,=vy+ 0o In 2, so that the two atoms can be

separated by an external force with a magnitude greater than
. . . L |F.|. The potentiaW(Ax) is a convex function when two
nonlinearity parameters in the latter two model€ritical . . .

i . atoms are not separated beyond the inflection point. When

exponents of the gap in the phonon spectrum, the correlation
length, and the Peierls-Nabarro barrier are truly universal i
these models, whenever Aubry transitions exist.

Jncreases, the range wheW¢(Ax) is a convex function in-

creases. Aw decreases)x, as well agF|, the force which

can break up the chain, also decreases. But the force required
to compress the chain increases rather quickly.

FIG. 1. Plots of the Morse potentislV in Eq. (2) for variouso
(y=0.5).

This paper is organized as follows. Our model is intro-
duced in Sec. Il. In Sec. lll we briefly summarize the nu- . : .
merical methods employed in the }(ljetermination of the We are interested n the phase diagrams and the related
ground state configurations. Section IV presents our resul lobal and local properties of the .mode_l. To do that one must
of phase diagrams. The Aubry transition is discussed in Se 'ISt obtain the ground.sFate configurations .Of. the system fo.r
V. Global and local behaviors are studied in Secs. VI andiVen values of the defining parameters. This is done numeri-
VII, respectively. Section VIII concludes the paper. cally.

Il. DEFINITION OF THE MODEL

Il. NUMERICAL METHODS
The model we consider here is defined by replacing the

interatomic potentiaW(x;, ;—X;) in Eq. (1) by the follow- m
ing modified Morse potential:

The phase diagram consists of commensurate and incom-
ensurate ground states in the parameter spa&eaoi 7.

The ground state is defined to be the configuration of atoms
{x;} which has the smallest value of average energy per atom
for a given set of the control parameterk,&,y). The
ground state could be commensurate or incommensurate. To
distinguish these states, one has to define a winding number
w corresponding to the state, which is the ratio of the mean
distance between successive atoms and the period of the ex-
fternal potential. Since the period of the external potential in
our model has been set to unity, the winding number is sim-
ply the mean distance between successive atoms,

2
Wi_? [e_(xi+1_xi_7)/0'_ 1]2_

2
Here o is a nonlinearity parameter. By changing the value of
o, one can change the Morse potentd] from a convex

function to a nonconvex one. We show in Fig. 1 the forms o

W in different limits. Wheno approaches to infinity, Eq2)
reduces to the harmonic potential:

W(AX)—3(AX— ¥)?,

whereAX=x;,1—

o—®

)

X; . In this limit, the Morse FK model be-
comes the standard FK model. Wheris not too large, the

potential W(AX) is like the original Morse potential:

. Xn—Xo
w=lim

n—oo

@)

If the winding numberw is a rational number, i.e.@

=P/Q (P and Q both being integeds the atoms are peri-
odic. The system is said to be in a commensurate state. If the
®, Ax<vy winding numberw is irrational, the state of the system is
W(AX)—{ 0?12, Ax>vy (4 incommensurate.
0, Ax=y.

Here the potentialW(AX) is a nonconvex function. Whem

We employed two different methods to determine the
approaches zero, the potenti®l{ Ax) is like the potential of
a hard rod:

ground state configurations. Since the Morse potential is
nonconvex, we use the method of effective potential in the
construction of the phase diagrams in order to eliminate un-

wanted metastable states. But in the studies of various global
and local properties of the system, methods that are based on
W(AX)— fg AAXX:;/' ®) the equilibrium condition are used for better accuracy. Both

methods are briefly summarized below.
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A. The method of effective potential Our strategy is therefore to first use the method of effec-

To construct the phase diagrams of the model, one mudive potential to search for the ground state configurations
first obtain the ground state configurations. Since the Morsé‘eeded in the construc';t.|or.1 of the Phase diagrams, and then
potential W, in our model is nonconvex, the method of ef- US€ the method of equilibrium condition for a more accurate
fective potential developed if10] is essential. This method d€términation of the values &f’s which are required in the
is equivalent to solving a minimax eigenvalue equation  Study of the Aubry transition.

A+ R(U)=V(W)+mifWu-u’)+Ru9]. (8 IV. PHASE DIAGRAMS

) ) o In this section we shall study the phase diagrams of the
HereR(u) is th.e effective potentlab;.ls the average energy model as the nonlinearity parameter is changed. The
per atomV/(u) is the external potential, alf(u—u’) isthe  ground states are determined by the method of effective po-
potential of the interaction between atoms. After the effecyential with a grid sizeN varying from 100 to 1000. The
tive potential is computed, we then obtain the ground statgsg,1ts we obtained are as follows.
configurations{x;} by means of a certain one-dimensional \yhen o is very large ¢>1), the Morse FK model re-
map, the so-called map[10]. And the winding numbew is  yerts to the standard FK model. Naturally, the phase dia-
obtained by comparing the ground state configurations  grams of the Morse FK model are essentially the same as
One may also use the effective potenfli) to compute the  {hat of the standard FK model. For any given rational wind-
total effective potential in order to determine the Wlndmging numbere, there is a corresponding commensurate area
number. _ ) ) (the Arnold tongugin the phase diagram in whiah is con-

The advantage of this method is that it needs only theant. Between any two tongues there is a gap that contains
Hamiltonian of the FK model to find the true ground statejncommensurate states as well as higher-order commensurate
configurations, and that it works for both convex and non-giates. The winding numbers of the tongues are comprised of
convex potentials. Other methods may give metastable statg§ the rational numbers between 0 and 1.
in the presence of nonconvex potentials. The method has, ag o decreasesd<1), the tongues on the upper side of
however, the following drawbacksl) The precision of the  the phase diagram expand gradually to the left, but the wind-
ground state configurations depends on the grid BizEm-  jhg numbers remain the sarfeee Fig. 2 Wheno decreases
!oloyed. Two atoms cannot be distinguished if their distancgither (0<0.5), the tongues that are constructed by wind-
is smaller than M. (2) The denominatoQ of the rational ing numbers 1) (Q=1,2, ...) expand rather quickly on
winding number (=P/Q) must be smaller thaN. (3) Be-  tnejr left edges, and begin to cover the tongues with
cause of the limit in precision in the ground state configura-— P/Q, whereP#1 (see Fig. 3
tions mentioned in pointl), one cannot obtain accurate val-  \when ¢ decreases furthewf< 0.35), the tongues that are
ues of quantities, such as _crltlcal exponents, yvh|ph ar@onstructed by winding numbers Q/are getting larger,
relevant to the Aubry transitiong4) This method is time  5nq nonminimal periodic configurations, such as states with

consuming. w=n/nQ (n,Q=1,2,...),begin to appeafsee Fig. 4 The
phase diagram is very similar to the phase diagram of the
B. The methods based on the equilibrium condition sine-Lennard-Jones systg8]. The upper part of the phase

, . , diagram is now filled only with tongues of winding numbers
We can use Aut_)ry S gracﬁent methpd] to write d_own a 1/Q and areas witlw=n/nQ. There are no incommensurate
system of differential equations for the forces acting on the;ates with irrational winding numbers in this region. As will
atoms: be seen below, the disappearance of the incommensurate
oH;  dx states has to do with the nonconvex part of the Morse poten-
—-——=— (9) tial. It is seen that tongues with smaller values@fhave
o dr larger areas. The areas of the=n/n phase increase when
decreases, but the areas of the-n/2n states will be cov-
They must satisfy the periodic condition, o=x;+P. Us-  ered by the tongue®=1/1. The lower part of the phase
ing the initial conditionx;=x,+iP/Q, we can find the diagram still consists of the tongues of winding numbers
ground state configuratiofx;}. In view of the fact that the =P/Q. This is the part that expands to the phase diagram of
ground state must satisfy the equilibrium conditionthe standard FK model ag—o°.
dH; 19x;=0, Schellnhuber and collaboratqfs7] suggested a To better understand the structures of the phase diagram,
Newton’s method which searches directly for the solution ofit is useful to follow the definition in19] (see alsg¢12]). We
dH; 19x;=0. By using this method, we just need to considershall call a phase “nonconvex” if at least one pair of atoms
the periodic conditiorx; . o=Xx;+ P and the initial condition experiences the nonconvex part of the Morse potential
X;j(0)=[iP/Q], where[ ] means the integral part. W(AX). In this case, at least one pair of the atoms is sepa-
The advantages of these methods are that they are fast@ted beyond the inflection point of the Morse potential, i.e.,
and more accurate than the method of effective potential isAx>Ax,=y+ o In 2. If none of the atoms uses the noncon-
They have, however, the following disadvantagés:they  vex part of the potential, the phase is called “convex.”
require the periodic conditiow;, o=Xx;+ P, which means We indicate by shaded areas the nonconvex phases in
the winding number must be determined beforehaf@l; Figs. 2—4. It is seen that nonconvex phases only occur in the
these methods very often give metastable configurationesommensurate states with=1/Q and n/nQ in the upper
when there exists nonconvex interaction as in our model. part of the phase diagram. As discussed before, this part of
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FIG. 2. Phase diagram of the Morse FK model éor 0.75 and FIG. 3. Phase diagram of the Morse FK model o 0.35 and

0.50. Shaded regions represent nonconvex phases. 0.30. Shaded regions represent nonconvex phases.
the diagram expands rather quickly over the part with all ) ) )
rational and irrational winding numbers asdecreases. And ~ AS we have seen in the preceding section, for large
since for smalle the nonconvex part of the Morse potential €Mougha in our model, the phase diagrams are smooth de-
is more easily experienced by the atoms, one reaches tigrmations of that in the standard FK model. We can thus
conclusion that nonconvex interaction destroys incommensustudy how the Aubry transitions are affected by the change
rate structures. in the 0. Wheno becomes small, the nonconvex part of the
To conclude this section, let us mention an interestingVlorse potential becomes important. It has the effect of de-
observation about the rate of contraction of the boundargtroying the incommensurate states. Therefore, for smill
curve between the convex and nonconvex phases for sma&ur model, there are no Aubry transitions in those parts of
o. Numerically we find that the values &f on this curve the phase diagram which consist of the nonconvex phases.
scale aso?, i.e.,k~ o2, asoc—0. To study the Aubry transitions one must have a more
accurate construction of the phase diagrams. As mentioned
before, we employ for this purpose the method of equilib-
rium condition to locate the periodic ground states. The
In his studies of the standard FK model, Aubp¥] phase diagram is then obtained by means of the Farey tree
showed that when the winding number is rational, the construction{6,14,15. In thenth Farey generation, there are
system of the FK model is always pinned. But when the2" 1+ 1 rational numberghence tonguésin the interval
winding numberw is irrational, on the curve of incommen- [0,1]. The curves of incommensurate states can also be con-
surate state in the parameter spacé ahd vy, there exists a  structed using thath Farey generation. For a given irratio-
critical pointk.(w) such that wherk<k.(w), the system is nal winding numberw*, we can find two rational winding
unpinned; and whek>k.(w), the system becomes pinned. numbersw’ and " that satisfye’ <w* <w” from thenth
This pinning-depinning transition in the FK model is called Farey generation to approximai€'. Whenn becomes infi-
the Aubry transition. We shall also study such transitions imite, the differences in these winding numbers will disappear
our model. (o'=w*=0w"). The average energy per atom for these

V. THE AUBRY TRANSITIONS
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(@) o= 020
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Y
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1.0 Y
FIG. 5. Schematic diagram for the constructions of curves of
b incommensurate statgthe dotted curvesand the critical points
7 (the circles. The black dots represent points on the edges of the
el ) Arnold tongues which are at the same heights as the neighboring
’ critical points. The edges of the steps in the devil's staircase are
s determined by the black dots on the two edges of each tongue.
depicted as a dotted curve in Fig. 5.
The next step is to calculate the critical vaki¢w), rep-
0.0 resented by a small circle in Fig. 5, of the Aubry transition
0.0 0.5 L0 along the curve of an incommensurate state. To this end the
powerful method of Greeng20,21] is used. This method
1 requires one to first rewrite the equilibrium condition
© o= 010 dH;/9x;=0 as a two-dimensional map,
1.0
Yi+1=f(Xi,yi),
Xi+1=9(Xi,Yi)- (10
o Unlike the standard FK model, such a map is not unique for
kosF . the Morse FK model. The equilibrium condition for our
model is
IH;
— _=0= 241X Mo _ g~ Xj+1=X—Vlo
X, O=ofe ™ i e Wi i ]
0.00.0 0.5 10 _ a—[e_z(xi_xi—l_Y)/U— e_(xi_xi—l_Y)/a']
k
Y + =— sin 27X . 11

2

FIG. 4. Phase diagram of the Morse FK model fer=0.20, ~ Defining yi.1=X;.1—X;, we obtain two possible maps
0.15, and 0.10. Shaded regions represent nonconvex phases. ~ Which are equivalent to Eq11). The first map is

_ — _ 1

winding numbers will be the sameH(w')=H(w*) Yisr=y—o In{3+u},

=H(w"). Solving these equations one can find the value of

y for given values ofo andk. For a fixed value ofr, the Xit1=XitVYit1, (12

points (y,k) then constitute the curve of incommensurate
state corresponding to the irrational winding numl€f, with the Jacobian
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af  of
V= a_yl a_xl 1 efz(Yify)/”_%ef(Yif'y)/” %k cos ZTXi (13)
= 78 29 | T | e 2o je o s 3+ Hccos 2n)

i I

Hereu;=[e Vi="/7— 112k sin(2mx)/27wo. From Eq.(11), u; can also be expressed as=[e~ Vi+1~7/7— 112 Hencey,
iS non-negative.
The second map is

Visr=7—o In{z—ui},
Xit1=Xi+Yit1, (14)
and the corresponding Jacobian is

1 e_z(yi_')’)/a'_ %e_<yi_7)/‘7 %k cos ZTXi
M/

= . (15
Cou—Ju2 | e 20— temimvle g — L\ fui+ Lk cos 2m;

From the two map$12) and(14), one easily sees that in each of them representing a stable commensurate state. Mag-
the second map the distance between any two neighboringjfication of any part of the curvénot within a step will
atoms is longer than the distance of the inflection pointreproduce the original curvgs]. The devil's staircases are
y+oIn 2, and hence mafl4) does not give configurations multifractals. Figure 7 presents some of the devil's staircases
in the convex phases. So we only use the first (i) in in our model.

Greene’s method to compute the critical pdinfw).
C. Multifractal structures

VI. GLOBAL BEHAVIORS OF PHASE TRANSITION To understand the multifractal structures of the devil's
OF INCOMMENSURATE STATES staircases, we folloyy15] and determine the Hausdorff di-

There are two kinds of properties which are of interest in”.‘e”S'Of?Do’ the generalized fractal dimensiar,, and the
singularity spectrunf(«).

the Aubry transitions. One is the global behavior, which con-
cerns the structures constituted by all of the critical points
k.(w). The other is the local behavior, which pertains to the
critical behaviors at the critical poirk.(w) of any incom- By the definition of Hausdorff dimensioD,, we can
mensurate state. In this section, we shall study the globatonstruct a partition function from theth Farey generation.
behavior first. The local behavior is considered in the next-etl; be the width of théth piece. The partition function is
section.

1. Hausdorff dimension

Zn—l

(D)= D

A. Critical lines (D) i;l I (16

The critical line is defined to be the collection of the criti-
cal pointsk.(w) for all irrational winding numbemw. Figure
6 shows critical lines for various defining parameters of th
model. It can be seen that the critical lines vary greatlyras
changes. And wheo becomes small€<0.35), some criti-
cal pointsk;(w) are “eaten” by the nonconvex phases on
the phase diagram. As mentioned before, there are no Aub
transitions on these curves of the incommensurate states
these parts of the phase diagram. In the following we shall be T+ H(Dy)
interested in the global properties of critical lines which con- —m o L 17
sist of critical pointsk.(w) of all incommensurate states. (Do)
That means only phase diagrams éor 0.35 will be consid-
ered.

When n approaches infinity, one hds(D)=c if D>D,,
and I'(D)=0 if D<Dg,. One may choose a finite posi-
Sive constant and determineD by solving the equation
I'™(Dy)=B. In order to improve on convergence in our
computation, we apply instead the ratio tri@2] by consid-
rering the ratio of two partition functions in different Farey
#Ienerations:

The convergence increasesrafcreases. We usat=9 in
our calculations.
We computeD, for o ranging fromo =100 to 0.35, and
find that the values of the Hausdorff dimension in these cases
The devil's staircase on the critical line(w) is formed are the same within computational error. It is 0.845002,
by considering the winding numbes as a function of the which is also the same as that found for the standard FK
parametery (see Fig. % This function contains only steps, model, the cosh FK modéWhen the nonlinearity parameter

B. Devil's staircases
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(b) o= 035
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0.0 0.5 1.0
Y
(¢) o= 0.30
k

0.0 >

0.0 1.0

FIG. 6. Critical line of the Morse FK model for=1.0, 0.35,
and 0.30. Shaded regions represent nonconvex phases.

o of this model is not less than Q.p15], and the Toda FK
model(when the nonlinearity parametgr defined in14], is
not greater than ong23].

2. Multifractal properties

Multifractal properties include the generalized fractal di-
mensionD and the singularity spectruri{«). Let|; again

KONTOROVA MODEL 2753
(a) o= 10
].0 - T T T —! -
® 05 - T
2
00— ) .
0.0 0.5 1.0
Y
(b) o= 0.35
1o ' —
W 05 — .
00— L]
0.0 0.5 1.0
Y

FIG. 7. Devil's staircase of the Morse FK model for=1.0 and
0.35. Staircases up to the ninth Farey generation are shown.

be the width of theith piece, andm; the difference of the
winding numbers of two neighboring steps:

M= w41~ ;. (18
The partition function of the multifractal can be written in
nth Farey generation d22]

anl q
m:
F(n)(q,r)Z 2 Irﬁ

(19

Again, one may choose a finite positive constBnand
determine the relation betweer{q) and q by solving the
equationI'(W(q,7)=B. As in the preceding subsection, we
prefer to determiner(q) by considering the ratio of two
partition functions in different Farey generations,

l"(n+1)(q, T)

F(n)(q,T) - (20)

Again, we usech=9 in our calculations. Once(q) is ob-
tained, we can compute(q) as

d
a(q)= dq 7(q). (21)
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I e —— 10 —————
Aﬁ ___ o=100
________ o= 1.0
o= 0.35
D, o5 | I'n 8 finos
I X I
_________________
0'0-50.0 0.0 50.0 0'00.0 7 0.5 L0
q o
FIG. 8. Generalized dimensioB,, of the devil's staircase for FIG. 9. Singularity spectruni(«) of the devil's staircase for
0=100, 1.0, and 0.35. 0=100, 1.0, and 0.35.

VII. LOCAL BEHAVIORS OF PHASE TRANSITION

And then the generalized fractal dimensibg and the sin- OF INCOMMENSURATE STATES

gularity spectrunf(«a) can be calculated:
We now turn to discuss critical behaviors at the critical
7(q) point k.(w) of incommensurate states. The winding number
q:q_l' (22 associated with the largest critical poii( w) is the golden
mean numbem=(\/§— 1)/2, which has a representation in
_ continued fractions a®=[0,1,1,1,1...]. This corresponds
fle)=qalq)=r(q). 23 to the breakup of the last Kolmogorov-Arnol'd-Mog&AM )

ical | h - torus. We shall compute the critical exponents of the Aubry
Our numerical results are shown in Figs. 8 and 9.AAS 5xgjtion along this curve for different values @f

decreasesD., decreases but both the Hausdorff dimension
Dy=0.845+0.002 andD _,, (we find D _5,=0.960+0.005
remain practically unchanged. Representative value®for
are D5;=0.16+0.02, 0.22-0.02, and 0.260.05 for o Consider a small vibratiow;(t) of the ith atom around
=0.35, 1, andr=100, respectively. the equilibrium positiorx;

We can see the same behaviors in the singularity spec-
trum f(a). As o decreases, the minimum afdecreases but Xi(D) =X+ &(t). (24)
the maximum ofa and of f(«) remain practically un-

D

A. The gap in the phonon spectrum

Then the linearized equation of motion for small vibration is

changed. iven by
From the above results, we see that while the generaq
shapes of the curves @, and f(«) vary in different gen- PHAX)) o
eralized FK models, there is still universality in the Haus- ei(t):_z v (), i,j=12,...Q.
dorff dimensionD, [which equals the maximum df(«)] ) o (25
in the standard FK, the Toda FKB&1), the cosh FK
(0=0.5), and the Morse FK ¢=0.35) model. For the Morse FK model,
|
2H —2e Pir1te ¥+, j=i+1
={ 26 %%+1—e %i+142e 2%~ %i+k cOS 27X, =i (26)
IXiXj | _pe=20ite 4, j=i—1
|
whered=(X;—X;,_1— y)/o. The phonon spectrurfi();} is obtained by solving this
The Fourier transform in timée of Eq. (26) gives QX Q matrix equatior(27). The gap in the phonon spectrum

Q. is defined to be the lowest phonon frequency in the sys-
tem, Qg=min{(};}. Fork<k., the ground state of the chain

is in a sliding mode and therefofe;=0. Ask>k., a gap

Q¢ in the phonon spectrum appears and the critical behavior
i=1,2,...Q. (270  of Qg can be characterized by the expongnf],

0=(—2e 2%i+e d)¢_,+ (28 2%+1—g di+14 2 20
—e %i+k cos 2rx;— Q%) e+ (—2e 2%+1
+e*5i+l)6i+ly
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Qg(k)~(k—k)X. (29 Vill. SUMMARY
We have calculateg for values ofo ranging from 0.35 to In this paper we have investigated a generalized FK
100. The result iy=1.02=0.01, which is independent of  model with a Morse-type interatomic action. The Morse po-
andk. tential we considered can change from a convex function to
a nonconvex one as the nonlinearity parameté reduced.
B. The correlation length We studied how such changes affect the phase diagrams, the

The correlation |engﬂ§ is defined to be the distance over critical Iines, the multifractal Structul’eS, and local critical be-
which a perturbatior; of theith atom propagates along the haviors in this model. We found that the phase diagram is
chain. An infinitesimal perturbatios atx; will cause a dis- qualitatively different from the phase diagram of the stan-

placemente; atx;, where dard FK model. There could exist nonconvex phases in
which at least one pair of atoms is influenced by the noncon-
€~ exp(—|x;—Xi|/§)€; . (29 vex part of the Morse potential. There are no incommensu-

rate phases in the nonconvex portion of the phase diagrams.

It has been showf7] that the correlation lengtf is the Hence nonconvex interaction destroys incommensurate
inverse of the Lyapunov exponext é=1/A. The Lyapunov . y - .

exponenix can be obtained from the eigenvalue of the Jaco_structures.ult IS fOHnd that whan<0.35, some critical points
bian matrixM=MMq_y---M;, where M; are given by k.(w) are “eaten” by the nonconvex area in the phase dia-

Eq. (13 gram. The critical lines become incomplete in these cases.
Q. (19). , , -
For k<k., the Lyapunov exponent is equal to zerop e therefore studied the multifractal structures and critical

=0. Fork>k,, the Lyapunov exponent scales as properties of the Aubry transitions only fer>0.35. Calcu-
lations of the local critical exponents of the Aubry transitions
A~(k—k)". (300 in this model show that these exponents are independent of

andk., and that they are of the same values as the corre-
sponding exponents in the standard, the Toda-, and the cosh-
type FK model. Hence the Aubry transitions in all these four
types of FK models belong to the same universality class.
The Hausdorff dimension in the Morse FK modébr o
=0.35 is also found to be the same as that found in the
The Peierls-Nabarr¢PN) barrier of a ground state is de- standard FK model. This is similar to the situation in the
fined to be the minimal energy barrier that must be overcomgoda and the cosh FK model, in which the Hausdorff dimen-
to translate continuously the chain of atoms on the periodigion assumes the same value only for a certain range of the

potential. corresponding nonlinearity parameter.
For k<k., the PN barrier is equal to zero, which means

the chain of atoms can slide without any extra energy. For
k>k., the PN barrier is nonvanishing and scales as ACKNOWLEDGMENTS

For the range ofr we considered, the critical exponemnt
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