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Morse-type Frenkel-Kontorova model
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We have investigated a generalized Frenkel-Kontorova model with a Morse-type potential which can change
from a convex function to a nonconvex one as the nonlinearity parameters is reduced. For small enoughs,
there appear in the phase diagram nonconvex phases in which at least one pair of atoms is influenced by the
nonconvex part of the Morse potential. There are no incommensurate states in the nonconvex phases. For
s.0.35, a devil’s staircase along the critical points of the Aubry transitions of all incommensurate states
can be constructed. We studied the universality of the Hausdorff dimension of the devil’s staircase,
and of some critical exponents relevant to the Aubry transitions.@S1063-651X~98!14302-7#

PACS number~s!: 05.45.1b, 64.70.Rh, 05.70.Jk
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I. INTRODUCTION

Many condensed-matter systems, such as charge-de
waves, magnetic spirals, and adsorbed monolayers, ex
the structures of commensurate and incommensurate st
as a result of two or more competing interactions in the s
tems. The main features of such modulated structures
well modeled by the Frenkel-Kontorova~FK! model @1,2#.

The FK model describes a chain of atoms subjected to
external periodic potential. The Hamiltonian of the F
model can be divided into two parts. One part is the ene
which is due to the interatomic interactions, and the othe
the energy of the atoms in the external periodic potential.
the standard FK model, the chain of atoms is connected
harmonic springs and subjected to an external sinusoida
tential. The Hamiltonian of the standard FK model is giv
by

H5(
i

@Wi~xi 112xi !1V~xi !#

5(
i

F1

2
~xi 112xi2g!21

k

~2p!2 ~12cos 2pxi !G .
~1!

HereWi(xi 112xi) is the potential of the interaction betwee
two nearest atoms,V(xi) the external sinusoidal potential,xi
the position of thei th atom, g the neutral length of the
spring, andk the rescaled strength of the external poten
compared to that of the spring potential. This seemin
simple one-dimensional model turns out to have very in
esting structures. The phase diagrams of the standard
model and various phase transitions occurring in the sys
have been thoroughly studied in previous works@3–7#.

In order to better model the real systems, many resea
ers had considered FK models with more complicated fo
of potentials. Some modified the forms of the external pe
odic potential@8,9#, while others changed the forms of th
interaction between atoms@6,10–15#.
571063-651X/98/57~3!/2747~10!/$15.00
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Of the works which considered modified forms of inte
atomic interactions, Refs.@6,10–13# changed the type of in-
teractive potential from convex functions to nonconvex on
These works were mainly concerned with the many com
cated phase diagrams and phase transitions induced b
nonconvex potentials, and thus did not discuss the impor
pinning-depinning phase transition along the incommen
rate states~the so-called Aubry transition! @4#. References
@14, 15# considered convex potentials of the Toda and
cosh type. Multifractal structures and local critical expone
of the Aubry transition are studied in these works, but t
phase diagrams found were simply smooth deformations
that of the standard FK model.

In this work, we shall consider a generalized FK mod
with a nonconvex interatomic potential having the form o
modified Morse potential@16#. This potential is chosen no
only because it represents the interatomic interaction be
than the simple harmonic potential does, but also becau
can change gradually from a convex function to a noncon
one as the nonlinearity parameters of this potential changes
This enables us to see how the complicated phase struc
emerge, and how the Aubry transitions are affected as
nonconvex interaction sets in.

What we found can be briefly summarized below. F
large enoughs, the phase diagrams of this model are simp
smooth deformations of the phase diagram in the stand
FK model. But ass decreases, nonconvex phases begin
emerge. These are the phases in which at least one pa
atoms is influenced by the nonconvex part of the Morse
tential. Incommensurate states do not exist in the noncon
phases, indicating that these states are destroyed by the
convex interaction. Fors smaller than a critical value, which
is found to be 0.35, the Aubry transitions do not exist
some part of the phase diagram. Fors.0.35, a devil’s stair-
case along the critical points of the Aubry transitions of
incommensurate states can be constructed. The genera
fractal dimension and the singularity spectrum vary sligh
ass changes in this range. The Hausdorff dimension, ho
ever, is the same as those found in the standard, Toda-,
cosh-type Frenkel-Kontorova models~for a wide range of
2747 © 1998 The American Physical Society
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nonlinearity parameters in the latter two models!. Critical
exponents of the gap in the phonon spectrum, the correla
length, and the Peierls-Nabarro barrier are truly universa
these models, whenever Aubry transitions exist.

This paper is organized as follows. Our model is intr
duced in Sec. II. In Sec. III we briefly summarize the n
merical methods employed in the determination of
ground state configurations. Section IV presents our res
of phase diagrams. The Aubry transition is discussed in S
V. Global and local behaviors are studied in Secs. VI a
VII, respectively. Section VIII concludes the paper.

II. DEFINITION OF THE MODEL

The model we consider here is defined by replacing
interatomic potentialW(xi 112xi) in Eq. ~1! by the follow-
ing modified Morse potential:

Wi5
s2

2
@e2~xi 112xi2g!/s21#2. ~2!

Heres is a nonlinearity parameter. By changing the value
s, one can change the Morse potentialWi from a convex
function to a nonconvex one. We show in Fig. 1 the forms
W in different limits. Whens approaches to infinity, Eq.~2!
reduces to the harmonic potential:

W~Dx!→ 1
2 ~Dx2g!2, s→` ~3!

whereDx[xi 112xi . In this limit, the Morse FK model be
comes the standard FK model. Whens is not too large, the
potentialW(Dx) is like the original Morse potential:

W~Dx!→H `, Dx!g
s2/2, Dx@g
0, Dx5g .

~4!

Here the potentialW(Dx) is a nonconvex function. Whens
approaches zero, the potentialW(Dx) is like the potential of
a hard rod:

W~Dx!→ H`, Dx,g
0, Dx>g . ~5!

FIG. 1. Plots of the Morse potentialW in Eq. ~2! for variouss
(g50.5).
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Any atom on the edge of the rod cannot be compressed
can be easily separated.

Let us consider the forceF between the atoms. The rela
tion of the force and the distance of two nearest atoms
given by

F52
]W

]~Dx!
5s@e22~Dx2g!/s2e2~Dx2g!/s!]. ~6!

The restoring forceF between atoms increases without lim
when the distance of two nearest atoms is shorter than
natural length of the spring (Dx,g). That means the spring
is hard to compress.

However, when the distance of two nearest atoms
longer than the natural length of the spring (Dx.g), there
exists a limiting value ofF, Fc52s/4, at the inflection
point Dx5DxI[g1s ln 2, so that the two atoms can b
separated by an external force with a magnitude greater
uFcu. The potentialW(Dx) is a convex function when two
atoms are not separated beyond the inflection point. Whes
increases, the range whereW(Dx) is a convex function in-
creases. Ass decreases,DxI as well asuFcu, the force which
can break up the chain, also decreases. But the force req
to compress the chain increases rather quickly.

We are interested in the phase diagrams and the rel
global and local properties of the model. To do that one m
first obtain the ground state configurations of the system
given values of the defining parameters. This is done num
cally.

III. NUMERICAL METHODS

The phase diagram consists of commensurate and inc
mensurate ground states in the parameter space ofk andg.
The ground state is defined to be the configuration of ato
$xi% which has the smallest value of average energy per a
for a given set of the control parameters (k,s,g). The
ground state could be commensurate or incommensurate
distinguish these states, one has to define a winding num
v corresponding to the state, which is the ratio of the me
distance between successive atoms and the period of the
ternal potential. Since the period of the external potentia
our model has been set to unity, the winding number is s
ply the mean distance between successive atoms,

v5 lim
n→`

xn2x0

n
. ~7!

If the winding numberv is a rational number, i.e.,v
5P/Q ~P and Q both being integers!, the atoms are peri-
odic. The system is said to be in a commensurate state. I
winding numberv is irrational, the state of the system
incommensurate.

We employed two different methods to determine t
ground state configurations. Since the Morse potentia
nonconvex, we use the method of effective potential in
construction of the phase diagrams in order to eliminate
wanted metastable states. But in the studies of various gl
and local properties of the system, methods that are base
the equilibrium condition are used for better accuracy. B
methods are briefly summarized below.
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A. The method of effective potential

To construct the phase diagrams of the model, one m
first obtain the ground state configurations. Since the Mo
potentialWi in our model is nonconvex, the method of e
fective potential developed in@10# is essential. This method
is equivalent to solving a minimax eigenvalue equation

l1R~u!5V~u!1min
u8

@W~u2u8!1R~u8!#. ~8!

HereR(u) is the effective potential,l is the average energ
per atom,V(u) is the external potential, andW(u2u8) is the
potential of the interaction between atoms. After the eff
tive potential is computed, we then obtain the ground s
configurations$xi% by means of a certain one-dimension
map, the so-calledt map@10#. And the winding numberv is
obtained by comparing the ground state configurations$xi%.
One may also use the effective potentialR(u) to compute the
total effective potential in order to determine the windi
number.

The advantage of this method is that it needs only
Hamiltonian of the FK model to find the true ground sta
configurations, and that it works for both convex and no
convex potentials. Other methods may give metastable s
in the presence of nonconvex potentials. The method
however, the following drawbacks.~1! The precision of the
ground state configurations depends on the grid sizeN em-
ployed. Two atoms cannot be distinguished if their distan
is smaller than 1/N. ~2! The denominatorQ of the rational
winding number (v5P/Q) must be smaller thanN. ~3! Be-
cause of the limit in precision in the ground state configu
tions mentioned in point~1!, one cannot obtain accurate va
ues of quantities, such as critical exponents, which
relevant to the Aubry transitions.~4! This method is time
consuming.

B. The methods based on the equilibrium condition

We can use Aubry’s gradient method@4# to write down a
system of differential equations for the forces acting on
atoms:

2
]Hi

]xi
5

dxi

dt
. ~9!

They must satisfy the periodic conditionxi 1Q5xi1P. Us-
ing the initial condition xi5x01 iP/Q, we can find the
ground state configuration$xi%. In view of the fact that the
ground state must satisfy the equilibrium conditi
]Hi /]xi50, Schellnhuber and collaborators@17# suggested a
Newton’s method which searches directly for the solution
]Hi /]xi50. By using this method, we just need to consid
the periodic conditionxi 1Q5xi1P and the initial condition
xi(0)5@ iP/Q#, where@ # means the integral part.

The advantages of these methods are that they are f
and more accurate than the method of effective potentia
They have, however, the following disadvantages:~1! they
require the periodic conditionxi 1Q5xi1P, which means
the winding number must be determined beforehand;~2!
these methods very often give metastable configurat
when there exists nonconvex interaction as in our mode
st
e

-
te
l

e

-
tes
s,

e

-

e

e

f
r

ter
s.

s

Our strategy is therefore to first use the method of eff
tive potential to search for the ground state configuratio
needed in the construction of the phase diagrams, and
use the method of equilibrium condition for a more accur
determination of the values ofxi ’s which are required in the
study of the Aubry transition.

IV. PHASE DIAGRAMS

In this section we shall study the phase diagrams of
model as the nonlinearity parameters is changed. The
ground states are determined by the method of effective
tential with a grid sizeN varying from 100 to 1000. The
results we obtained are as follows.

When s is very large (s@1), the Morse FK model re-
verts to the standard FK model. Naturally, the phase d
grams of the Morse FK model are essentially the same
that of the standard FK model. For any given rational win
ing numberv, there is a corresponding commensurate a
~the Arnold tongue! in the phase diagram in whichv is con-
stant. Between any two tongues there is a gap that cont
incommensurate states as well as higher-order commens
states. The winding numbers of the tongues are comprise
all the rational numbers between 0 and 1.

As s decreases (s<1), the tongues on the upper side
the phase diagram expand gradually to the left, but the wi
ing numbers remain the same~see Fig. 2!. Whens decreases
further (s,0.5), the tongues that are constructed by win
ing numbers 1/Q (Q51,2, . . . ) expand rather quickly on
their left edges, and begin to cover the tongues withv
5P/Q, wherePÞ1 ~see Fig. 3!.

Whens decreases further (s,0.35), the tongues that ar
constructed by winding numbers 1/Q are getting larger,
and nonminimal periodic configurations, such as states w
v5n/nQ (n,Q51,2, . . . ),begin to appear~see Fig. 4!. The
phase diagram is very similar to the phase diagram of
sine-Lennard-Jones system@18#. The upper part of the phas
diagram is now filled only with tongues of winding numbe
1/Q and areas withv5n/nQ. There are no incommensura
states with irrational winding numbers in this region. As w
be seen below, the disappearance of the incommensu
states has to do with the nonconvex part of the Morse po
tial. It is seen that tongues with smaller values ofQ have
larger areas. The areas of thev5n/n phase increase whens
decreases, but the areas of thev5n/2n states will be cov-
ered by the tonguesv51/1. The lower part of the phas
diagram still consists of the tongues of winding numbersv
5P/Q. This is the part that expands to the phase diagram
the standard FK model ass→`.

To better understand the structures of the phase diag
it is useful to follow the definition in@19# ~see also@12#!. We
shall call a phase ‘‘nonconvex’’ if at least one pair of atom
experiences the nonconvex part of the Morse poten
W(Dx). In this case, at least one pair of the atoms is se
rated beyond the inflection point of the Morse potential, i.
Dx.DxI5g1s ln 2. If none of the atoms uses the nonco
vex part of the potential, the phase is called ‘‘convex.’’

We indicate by shaded areas the nonconvex phase
Figs. 2–4. It is seen that nonconvex phases only occur in
commensurate states withv51/Q and n/nQ in the upper
part of the phase diagram. As discussed before, this pa
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the diagram expands rather quickly over the part with
rational and irrational winding numbers ass decreases. And
since for smalls the nonconvex part of the Morse potenti
is more easily experienced by the atoms, one reaches
conclusion that nonconvex interaction destroys incommen
rate structures.

To conclude this section, let us mention an interest
observation about the rate of contraction of the bound
curve between the convex and nonconvex phases for s
s. Numerically we find that the values ofk on this curve
scale ass2, i.e., k;s2, ass→0.

V. THE AUBRY TRANSITIONS

In his studies of the standard FK model, Aubry@4#
showed that when the winding numberv is rational, the
system of the FK model is always pinned. But when t
winding numberv is irrational, on the curve of incommen
surate state in the parameter space ofk andg, there exists a
critical point kc(v) such that whenk,kc(v), the system is
unpinned; and whenk.kc(v), the system becomes pinne
This pinning-depinning transition in the FK model is calle
the Aubry transition. We shall also study such transitions
our model.

FIG. 2. Phase diagram of the Morse FK model fors50.75 and
0.50. Shaded regions represent nonconvex phases.
ll

he
u-

g
y
all

e

n

As we have seen in the preceding section, for la
enoughs in our model, the phase diagrams are smooth
formations of that in the standard FK model. We can th
study how the Aubry transitions are affected by the chan
in the s. Whens becomes small, the nonconvex part of t
Morse potential becomes important. It has the effect of
stroying the incommensurate states. Therefore, for smalls in
our model, there are no Aubry transitions in those parts
the phase diagram which consist of the nonconvex phas

To study the Aubry transitions one must have a mo
accurate construction of the phase diagrams. As mentio
before, we employ for this purpose the method of equil
rium condition to locate the periodic ground states. T
phase diagram is then obtained by means of the Farey
construction@6,14,15#. In thenth Farey generation, there ar
2n2111 rational numbers~hence tongues! in the interval
@0,1#. The curves of incommensurate states can also be
structed using thenth Farey generation. For a given irratio
nal winding numberv* , we can find two rational winding
numbersv8 andv9 that satisfyv8,v* ,v9 from thenth
Farey generation to approximatev* . Whenn becomes infi-
nite, the differences in these winding numbers will disapp
(v8>v* >v9). The average energy per atom for the

FIG. 3. Phase diagram of the Morse FK model fors50.35 and
0.30. Shaded regions represent nonconvex phases.
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57 2751MORSE-TYPE FRENKEL-KONTOROVA MODEL
winding numbers will be the same,H̄(v8)5H̄(v* )
5H̄(v9). Solving these equations one can find the value
g for given values ofs and k. For a fixed value ofs, the
points (g,k) then constitute the curve of incommensura
state corresponding to the irrational winding numberv* ,

FIG. 4. Phase diagram of the Morse FK model fors50.20,
0.15, and 0.10. Shaded regions represent nonconvex phases.
f

depicted as a dotted curve in Fig. 5.
The next step is to calculate the critical valuekc(v), rep-

resented by a small circle in Fig. 5, of the Aubry transiti
along the curve of an incommensurate state. To this end
powerful method of Greene@20,21# is used. This method
requires one to first rewrite the equilibrium conditio
]Hi /]xi50 as a two-dimensional map,

yi 115 f ~xi ,yi !,

xi 115g~xi ,yi !. ~10!

Unlike the standard FK model, such a map is not unique
the Morse FK model. The equilibrium condition for ou
model is

]Hi

]xi
505s@e22~xi 112xi2g!/s2e2~xi 112xi2g!/s#

2s@e22~xi2xi 212g!/s2e2~xi2xi 212g!/s#

1
k

2p
sin 2pxi . ~11!

Defining yi 115xi 112xi , we obtain two possible map
which are equivalent to Eq.~11!. The first map is

yi 115g2s ln$ 1
2 1Aui%,

xi 115xi1yi 11 , ~12!

with the Jacobian

FIG. 5. Schematic diagram for the constructions of curves
incommensurate states~the dotted curves! and the critical points
~the circles!. The black dots represent points on the edges of
Arnold tongues which are at the same heights as the neighbo
critical points. The edges of the steps in the devil’s staircase
determined by the black dots on the two edges of each tongue
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Mi[S ] f

]yi

] f

]xi

]g

]yi

]g

]xi

D 5
1

ui1Aui /2
S e22~yi2g!/s2 1

2 e2~yi2g!/s 1
2 k cos 2pxi

e22~yi2g!/s2 1
2 e2~yi2g!/s ui1

1
2 Aui1

1
2 k cos 2pxi

D . ~13!

Hereui[@e2(yi2g)/s2 1
2 #22k sin(2pxi)/2ps. From Eq.~11!, ui can also be expressed asui5@e2(yi 112g)/s2 1

2 #2. Henceui
is non-negative.

The second map is

yi 115g2s ln$ 1
2 2Aui%,

xi 115xi1yi 11 , ~14!

and the corresponding Jacobian is

Mi85
1

ui2Aui /2
S e22~yi2g!/s2 1

2 e2~yi2g!/s 1
2 k cos 2pxi

e22~yi2g!/s2 1
2 e2~yi2g!/s ui2

1
2 Aui1

1
2 k cos 2pxi

D . ~15!
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From the two maps~12! and ~14!, one easily sees that i
the second map the distance between any two neighbo
atoms is longer than the distance of the inflection po
g1s ln 2, and hence map~14! does not give configuration
in the convex phases. So we only use the first map~12! in
Greene’s method to compute the critical pointkc(v).

VI. GLOBAL BEHAVIORS OF PHASE TRANSITION
OF INCOMMENSURATE STATES

There are two kinds of properties which are of interest
the Aubry transitions. One is the global behavior, which co
cerns the structures constituted by all of the critical poi
kc(v). The other is the local behavior, which pertains to t
critical behaviors at the critical pointkc(v) of any incom-
mensurate state. In this section, we shall study the glo
behavior first. The local behavior is considered in the n
section.

A. Critical lines

The critical line is defined to be the collection of the cri
cal pointskc(v) for all irrational winding numberv. Figure
6 shows critical lines for various defining parameters of
model. It can be seen that the critical lines vary greatly as
changes. And whens becomes small (s,0.35), some criti-
cal pointskc(v) are ‘‘eaten’’ by the nonconvex phases o
the phase diagram. As mentioned before, there are no A
transitions on these curves of the incommensurate state
these parts of the phase diagram. In the following we shal
interested in the global properties of critical lines which co
sist of critical pointskc(v) of all incommensurate states
That means only phase diagrams fors>0.35 will be consid-
ered.

B. Devil’s staircases

The devil’s staircase on the critical linekc(v) is formed
by considering the winding numberv as a function of the
parameterg ~see Fig. 5!. This function contains only steps
ng
t

-
s

al
t

e

ry
in
e
-

each of them representing a stable commensurate state.
nification of any part of the curve~not within a step! will
reproduce the original curve@6#. The devil’s staircases ar
multifractals. Figure 7 presents some of the devil’s stairca
in our model.

C. Multifractal structures

To understand the multifractal structures of the dev
staircases, we follow@15# and determine the Hausdorff d
mensionD0 , the generalized fractal dimensionDq , and the
singularity spectrumf (a).

1. Hausdorff dimension

By the definition of Hausdorff dimensionD0 , we can
construct a partition function from thenth Farey generation
Let l i be the width of thei th piece. The partition function is

G~n!~D !5 (
i 51

2n21

l i
D . ~16!

When n approaches infinity, one hasG(D)5` if D.D0 ,
and G(D)50 if D,D0 . One may choose a finite pos
tive constantB and determineD0 by solving the equation
G (n)(D0)5B. In order to improve on convergence in ou
computation, we apply instead the ratio trick@22# by consid-
ering the ratio of two partition functions in different Fare
generations:

G~n11!~D0!

G~n!~D0!
51. ~17!

The convergence increases asn increases. We usedn59 in
our calculations.

We computeD0 for s ranging froms5100 to 0.35, and
find that the values of the Hausdorff dimension in these ca
are the same within computational error. It is 0.84560.002,
which is also the same as that found for the standard
model, the cosh FK model~when the nonlinearity paramete
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s of this model is not less than 0.5! @15#, and the Toda FK
model~when the nonlinearity parameterb, defined in@14#, is
not greater than one! @23#.

2. Multifractal properties

Multifractal properties include the generalized fractal
mensionDq and the singularity spectrumf (a). Let l i again

FIG. 6. Critical line of the Morse FK model fors51.0, 0.35,
and 0.30. Shaded regions represent nonconvex phases.
be the width of thei th piece, andmi the difference of the
winding numbers of two neighboring steps:

mi5v i 112v i . ~18!

The partition function of the multifractal can be written
nth Farey generation as@22#

G~n!~q,t!5 (
i 51

2n21
mi

q

l i
t~q! . ~19!

Again, one may choose a finite positive constantB and
determine the relation betweent(q) and q by solving the
equationG (n)(q,t)5B. As in the preceding subsection, w
prefer to determinet(q) by considering the ratio of two
partition functions in different Farey generations,

G~n11!~q,t!

G~n!~q,t!
51. ~20!

Again, we usedn59 in our calculations. Oncet(q) is ob-
tained, we can computea(q) as

a~q!5
d

dq
t~q!. ~21!

FIG. 7. Devil’s staircase of the Morse FK model fors51.0 and
0.35. Staircases up to the ninth Farey generation are shown.
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And then the generalized fractal dimensionDq and the sin-
gularity spectrumf (a) can be calculated:

Dq5
t~q!

q21
, ~22!

f ~a!5qa~q!2t~q!. ~23!

Our numerical results are shown in Figs. 8 and 9. Ass
decreases,D` decreases but both the Hausdorff dimens
D050.84560.002 andD2` ~we find D25050.96060.005!
remain practically unchanged. Representative values forD`

are D5050.1660.02, 0.2260.02, and 0.2660.05 for s
50.35, 1, ands>100, respectively.

We can see the same behaviors in the singularity sp
trum f (a). As s decreases, the minimum ofa decreases bu
the maximum of a and of f (a) remain practically un-
changed.

From the above results, we see that while the gen
shapes of the curves ofDq and f (a) vary in different gen-
eralized FK models, there is still universality in the Hau
dorff dimensionD0 @which equals the maximum off (a)#
in the standard FK, the Toda FK (b<1), the cosh FK
~s>0.5!, and the Morse FK (s>0.35) model.

FIG. 8. Generalized dimensionDq of the devil’s staircase for
s5100, 1.0, and 0.35.
n

c-

al

-

VII. LOCAL BEHAVIORS OF PHASE TRANSITION
OF INCOMMENSURATE STATES

We now turn to discuss critical behaviors at the critic
point kc(v) of incommensurate states. The winding numb
associated with the largest critical pointkc(v) is the golden
mean numberv5(A521)/2, which has a representation
continued fractions asv5@0,1,1,1,1, . . . #. This corresponds
to the breakup of the last Kolmogorov-Arnol’d-Moser~KAM !
torus. We shall compute the critical exponents of the Aub
transition along this curve for different values ofs.

A. The gap in the phonon spectrum

Consider a small vibratione i(t) of the i th atom around
the equilibrium positionxi ,

xi~ t !5xi1e i~ t !. ~24!

Then the linearized equation of motion for small vibration
given by

e i~ t !52(
j

]2H~$xi%!

]xi]xj
e j~ t !, i , j 51,2, . . . ,Q.

~25!

For the Morse FK model,

FIG. 9. Singularity spectrumf (a) of the devil’s staircase for
s5100, 1.0, and 0.35.
]2H

]xi]xj
5H 22e22d i 111e2d i 11, j 5 i 11

2e22d i 112e2d i 1112e22d i2e2d i1k cos 2pxi , j 5 i
22e22d i1e2d i, j 5 i 21

~26!
ys-
n

vior
whered i[(xi2xi 212g)/s.
The Fourier transform in timet of Eq. ~26! gives

05~22e22d i1e2d i !e i 211~2e22d i 112e2d i 1112e22d i

2e2d i1k cos 2pxi2V2!e i1~22e22d i 11

1e2d i 11!e i 11 ,

i 51,2, . . . ,Q. ~27!
The phonon spectrum$V i% is obtained by solving this
Q3Q matrix equation~27!. The gap in the phonon spectrum
VG is defined to be the lowest phonon frequency in the s
tem,VG5min$Vi%. For k,kc , the ground state of the chai
is in a sliding mode and thereforeVG50. As k.kc , a gap
VG in the phonon spectrum appears and the critical beha
of VG can be characterized by the exponentx @7#,
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VG~k!;~k2kc!
x. ~28!

We have calculatedx for values ofs ranging from 0.35 to
100. The result isx51.0260.01, which is independent ofs
andkc .

B. The correlation length

The correlation lengthj is defined to be the distance ov
which a perturbatione i of the i th atom propagates along th
chain. An infinitesimal perturbatione i at xi will cause a dis-
placemente j at xj , where

e j;exp~2uxj2xi u/j!e i . ~29!

It has been shown@7# that the correlation lengthj is the
inverse of the Lyapunov exponentl, j51/l. The Lyapunov
exponentl can be obtained from the eigenvalue of the Ja
bian matrix M5MQMQ21•••M1 , where Mi are given by
Eq. ~13!.

For k,kc , the Lyapunov exponentl is equal to zero,l
50. Fork.kc , the Lyapunov exponentl scales as

l;~k2kc!
n. ~30!

For the range ofs we considered, the critical exponentn
is found to ben50.9960.01, which is also independent ofs
andkc .

C. The Peierls-Nabarro barrier

The Peierls-Nabarro~PN! barrier of a ground state is de
fined to be the minimal energy barrier that must be overco
to translate continuously the chain of atoms on the perio
potential.

For k,kc , the PN barrier is equal to zero, which mea
the chain of atoms can slide without any extra energy.
k.kc , the PN barrier is nonvanishing and scales as

EPN;~k2kc!
C, ~31!

whereC is the critical exponent related toEPN.
The value of the critical exponentC is found to beC

53.0060.02 for the values ofs we considered. As with the
other two exponents, it is independent ofs andkc .
on
-

e
ic
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VIII. SUMMARY

In this paper we have investigated a generalized
model with a Morse-type interatomic action. The Morse p
tential we considered can change from a convex function
a nonconvex one as the nonlinearity parameters is reduced.
We studied how such changes affect the phase diagrams
critical lines, the multifractal structures, and local critical b
haviors in this model. We found that the phase diagram
qualitatively different from the phase diagram of the sta
dard FK model. There could exist nonconvex phases
which at least one pair of atoms is influenced by the nonc
vex part of the Morse potential. There are no incommen
rate phases in the nonconvex portion of the phase diagra
Hence nonconvex interaction destroys incommensu
structures. It is found that whens,0.35, some critical points
kc(v) are ‘‘eaten’’ by the nonconvex area in the phase d
gram. The critical lines become incomplete in these ca
We therefore studied the multifractal structures and criti
properties of the Aubry transitions only fors.0.35. Calcu-
lations of the local critical exponents of the Aubry transitio
in this model show that these exponents are independents
and kc , and that they are of the same values as the co
sponding exponents in the standard, the Toda-, and the c
type FK model. Hence the Aubry transitions in all these fo
types of FK models belong to the same universality cla
The Hausdorff dimension in the Morse FK model~for s
>0.35! is also found to be the same as that found in
standard FK model. This is similar to the situation in t
Toda and the cosh FK model, in which the Hausdorff dime
sion assumes the same value only for a certain range o
corresponding nonlinearity parameter.
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